

DBY-003-1162003

Seat No.

M. Sc. (Sem. II) Examination

July - 2022

Mathematics: CMT-2003

(Topology-II)

Faculty Code: 003 Subject Code: 1162003

Time: $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1)

- (1) There are total five questions.
- (2) All questions are mandatory.
- (3) Each question carries 14 marks.
- 1 Answer any seven of the following:
 - (1) Define with example : T_3 -Space.
 - (2) Define with example: Normal Space.
 - (3) Define with example: Completely Regular Space.
 - (4) Define with example: Limit point Compact Space.
 - (5) State only Tietze Extension Theorem.
 - (6) Justify whether the real line \mathbb{R} is compact or not?
 - (7) Define with example : Complete metric space.
 - (8) Give Statement of the finite intersections property.
- **2** Answer any two of the following:
 - (1) Let X and Y be two topological spaces. Prove that $X \times Y$ is a T_2 -space if and only if X and Y are T_2 -spaces.
 - (2) Prove that, a topological space X is Hausdorff if and only if the set $\Delta = \{(x, x) : x \in X\}$ is a closed subset of $X \times X$.

- (3) Let X be a T_I -space. Prove that, X is regular if and only if, for any point $x \in X$ and open set U containing X, there is an open set X containing X such that $\overline{V} \subseteq U$.
- **3** Answer any one of the following:
 - (1) (a) Prove that, homeomorphic image of a normal space is normal.
 - (b) Let X_1 and X_2 be two topological spaces. Prove that, $X_1 \times X_2$ is a completely regular space if and only if X_1 and X_2 are completely regular spaces.
 - (2) (a) Prove that, a regular space with countable basis is normal.
 - (b) State and prove, Tube Lemma.
- 4 Answer the following:
 - (1) State and prove, Extreme Value Theorem.
 - (2) Let X be a topological space. Prove that, X is compact if and only if for every collection C of closed sets $\{C_{\alpha}: \alpha \in I\}$ in X having the finite intersection property.

$$\bigcap_{\alpha \in I} C_{\alpha} \neq \emptyset.$$

- 5 Answer any two of the following:
 - (1) Prove that, a sequence in \mathbb{R}^n is convergent relative to the Euclidean metric d if and only if it is convergent relative to the square metric ρ .
 - (2) Let X and Y be two topological spaces. Prove that X × Y is a compact space if and only if X and Y are compact spaces.
 - (3) Prove that, every compact subspaces of a metric space is closed and bounded.
 - (4) State and prove, Heine-Borel Theorem.